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A stability analyzer for transition prediction over arbitrary three-dimensional wings operating in the
transonic regime is proposed. This analyzer is used to illustrate the importance of including the effects
of spanwise pressure gradient in transition predictions over such con� gurations. To this end, three cal-
culation methods were employed: 1) a three-dimensional Euler solver, 2) a three-dimensional boundary-
layer solver, and 3) a numerical method for the solution of the linear stability equations based on the
temporal formulation. The in� uence of spanwise pressure gradients is illustrated by the application of
this stability analyzer to the � ow about the NASA AMES and ONERA-M6 wings. The pertinence of using
a fully three-dimensional method rather than the simpler conical-� ow calculations is demonstrated. The
differences between the fully three-dimensional and conical-� ow results are of the same order as the
curvature or nonparallel effects.

Nomenclature
b = wingspan, m
Cp = pressure coef� cient
c = wing mean chord, m
f = frequency, Hz
k = wave-vector module
M` = freestream Mach number
n = ampli� cation factor
Q = mean � ow quantity
q = instantaneous � ow quantity
Rec = Reynolds number, Uec /ne

t = time
Ue = inviscid � ow velocity, m/s
u, , w = instantaneous velocity components
Vgr = group velocity vector, real part
V` = freestream velocity, m/s
x, y, z = local Cartesian coordinates
a = angle of attack
a, b = wave-vector components
gi = spatial growth rate
ne = kinematic viscosity, m2/s
c = wave-vector direction with respect to the inviscid

streamline
ce = orientation of the inviscid streamline with respect

to the chordwise direction
v = pulsation of the perturbation

Subscripts
i = imaginary part
r = real part
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Superscript

˜ = perturbation quantity

Introduction

T HE transition from laminar to turbulent � ow is an essen-
tial aspect of � uid dynamics, in relation to drag reduction.

The physical processes associated with transition are not yet
fully understood, as pointed out by Saric1 in his review of
experimental research in transition. It is nonetheless an estab-
lished fact that a signi� cant reduction of the skin friction drag
can be obtained by maintaining a laminar � ow over the longest
extent possible of the wing. This is realized by the use of
natural laminar � ow (NLF) airfoils and laminar � ow control
(LFC) technologies such as suction and wall cooling.

The capability to predict transition is thus essential to wing-
design engineers. The linear stability theory, along with the
empirical en method, provides an appropriate framework for
transition predictions over wings in the cruise regime. Numer-
ical methods for the solution of the linear stability equations
have been developed.2–5 These methods were mostly applied
to in� nite swept wings or conical wings. Only a few recent
efforts are presented in the literature for the analysis of arbi-
trary geometries. Spall and Wie6 studied the stability of the
boundary layer over the nose of a general aviation aircraft in
the incompressible � ow regime. Iyer et al.7 considered the at-
tachment-line problem on the leading edge of a swept tran-
sonic wing.

The authors have developed a stability analyzer (SCOLIC)
based on the temporal and spatial formulations of the linear
stability theory.8,9 SCOLIC also originally used the conical-
wing assumption and was therefore appropriate for the predic-
tion of transition location on two-dimensional sections and
three-dimensional conical swept wings only. It has now been
extended for arbitrary three-dimensional � ows and integrated
into a stability analysis package that includes a three-dimen-
sional Euler solver and a three-dimensional boundary-layer
solver.

This paper presents results that have been obtained with this
stability analyzer. The importance of undertaking fully three-
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Fig. 1 Fully three-dimensional n-factor integration procedure.

dimensional calculations is demonstrated by comparing the re-
sults obtained with the three-dimensional stability analyzer to
conical-� ow solutions.

Stability Analysis
The linear stability theory analyzes the characteristics of the

instabilities in the mean laminar � ow near the surface of in-
terest. Transition prediction is composed of three tasks: 1) the
calculation of the external inviscid � ow� eld using an inviscid-
� ow solver, 2) the accurate calculation of the viscous � ow� eld
in the vicinity of the body using a boundary-layer solver, and
3) the solution of the linear stability equations.

Flow Calculations
The inviscid � ow� eld is obtained through the solution of the

three-dimensional unsteady Euler equations. The numerical
method chosen here to solve the equations is based on a � nite
volume cell-centered formulation.10 A structured O– H grid is
used to discretize the calculation domain. To compute the vis-
cous � ow near the surface, a � nite difference boundary-layer
code based on the characteristics method11 is used.

In the complete three-dimensional calculation procedure
used in this work, the surface velocity distribution needed to
conduct boundary-layer calculations is directly given by the
Euler solver. On the other hand, the procedure typically used
to compute surface velocities in conical-� ow calculations con-
sists of solving the surface Euler equations expressed in the
conical-wing coordinate system12:

dwe 2 2= 2u = 2 u 2 w (1)Ïe s e
du

where ue is the circumferential (chordwise) surface velocity,
we is the radial (spanwise) surface velocity, us is the resultant
inviscid velocity obtained from the surface pressure by using
the compressible Bernoulli equation, and u is the circumfer-
ential coordinate.

Transition Prediction
Linear Stability Theory

For a local Cartesian coordinate system, the instantaneous
� ow variables, i.e., the velocity components u, , w in the
streamwise x, wall-normal y, and cross� ow z directions, the
pressure p and the temperature T, are assumed to be of the
form

i(ax1bz2v t)˜q(x, y, z, t) = Q(y) 1 q(y)e (2)

where Q(y) is the laminar mean pro� le, is the perturbationq̃( y)
amplitude, a and b are its wave numbers, and v its pulsation
(complex frequency).

The problem is formulated using the parallel � ow assump-
tion. By neglecting the non-linear and higher-order terms, the
problem can be expressed as a homogeneous system of � ve
linear, second-order ODEs. Given homogeneous boundary
conditions, the task reduces to the solution of an eigenvalue
problem: nontrivial solutions exist only for certain combina-
tions of the parameters a, b, and v. In general a, b, and v
are complex numbers, which corresponds to six real param-
eters. In the temporal stability theory used here, a and b are
assumed to be real. The real part of v, vr, is the frequency of
the perturbation, and its imaginary part vi yields the pertur-
bation temporal growth rate.

A � nite difference method using a staggered mesh is em-
ployed in this work to discretize the linear stability equations.
For given a and b, the system of equations is amenable to a
linear eigenvalue problem in v.

en Method

The linear stability theory allows the calculation of the sta-
bility characteristics of a laminar � ow� eld. However, the main

objective of this work is transition prediction. The main as-
sumption regarding transition prediction is that there exists a
critical ampli� cation of the disturbances at the transition lo-
cation. The amplitude ratio A/A0 can be calculated assuming
that the growth of the disturbance from its initial amplitude
A0, to the critical value Acr, can be predicted by the linear
stability characteristics. The amplitude ratio, or the more com-
monly used ampli� cation factor, n = < (A/A0), is calculated by
integrating gi along the path of propagation that is parallel to
Vgr

s

n(s) = 2 g ds (3)iE
s0

where s is the position on the wing surface and s0 is the point
of inception of the perturbation (gi = 0). The real part of the
group velocity is given by

­v ­vr r
V = , (4)gr S D­a ­b

When integrating the n factor, the main difference between a
quasi-three-dimensional stability analysis and a fully three-di-
mensional one lies in the selection of the boundary-layer so-
lutions. On an in� nite-span wing, the similarity of the solution
in the spanwise direction allows the use of a single spanwise
section, and the calculations proceed in the streamwise direc-
tion one station at a time. The same applies for a conical wing.
On an arbitrary three-dimensional wing, there is no such span-
wise similarity. It is therefore necessary to use a selection pro-
cedure based on the group velocity. Figure 1 illustrates the
procedure used in SCOLIC: the n-factor integration points are
de� ned by following the direction given by the group velocity
until the intersection with a grid line where new stability cal-
culations are performed using the boundary-layer pro� les from
the nearest grid point. This strategy was adopted to avoid in-
terpolation of the boundary-layer pro� les between neighboring
stations. The calculation procedure starts near the leading edge
and the inception point, where the n-factor integration begins,
is automatically determined by the code.

The n-factor calculation is done under the constraint of con-
stant dimensional frequency f. A � nite number of frequencies
are selected, and an n factor is calculated for each of them.
The frequency that reaches the critical n factor � rst is consid-
ered the most relevant frequency for the prediction of transi-
tion location.

In the temporal stability theory used here, there are four
independent parameters: a, b, vr, and vi. The eigenvalue prob-
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Fig. 4 Surface velocity distribution at z /b = 17.2.

Fig. 3 Boundary-layer pro� les at z /b = 17.2%.

Fig. 2 Surface pressure distribution.

lem provides two real relations. In the calculation of the n
factor, the frequency vr is given. Therefore, an additional re-
lation (or constraint) is needed to close the problem. This ad-
ditional constraint is provided by the maximization of the tem-
poral growth rate vi (envelope method).

The correlation of the ampli� cation factor with the transition
location is the basis of the so-called en method. The critical
value ncr is not universal and depends on the type and ampli-
tude of the forcing disturbances.13 For � ight conditions (low
background turbulence levels), a mean value of 15 has been
observed experimentally,14 when the n factor is calculated us-
ing the envelope method.

The numerical procedures implemented in the code SCOLIC
have been validated by comparisons of the results with those
from other linear stability analysis codes. Such comparisons
are reported in Refs. 8 and 9.

Results and Discussion
To demonstrate the capability of the proposed stability an-

alyzer to predict transition over an arbitrary wing, the latter
was applied to the transonic � ow on two different wings: the
NASA AMES swept wing and the ONERA-M6 wing. The
whole calculation procedure will be presented for the NASA
AMES wing, with results for both the lower and upper sur-
faces, whereas only n-factor distributions will be given for the
ONERA wing. These wings are described in Ref. 15.

NASA AMES Swept Wing
The NASA AMES swept wing is representative of actual

geometries encountered on commercial aircraft. It is composed
of two sections: the inboard section has a leading-edge sweep
of 36 deg and a trailing edge sweep of 3.6 deg, while the
sweep angles of the outboard section are 27 and 17 deg for
the leading and trailing edges, respectively. The wing pro� le
and twist vary along the span. Calculations were performed at
M` = 0.833, a = 1.75 deg, and Rec = 14.3 3 106 (based on
the mean chord, c = 2.42 m).

The pressure distribution on the wing surface was obtained
using the three-dimensional Euler solver with a grid of 121 3
31 3 48 points. The pressure coef� cient distribution on the
suction and pressure sides of the wing is presented in Fig. 2.
It is worth noticing at this point that the pressure � eld over
this wing is far from being conical because signi� cant span-
wise pressure gradients are observed in Fig. 2, particularly on
the inboard section, and that a strong shock is located far aft
along the whole span of the wing upper surface.

Streamwise and cross� ow velocity distributions are pre-
sented in Fig. 3 at three x /c locations in the 17.2% span sec-
tion. To assess the importance of the spanwise pressure gra-
dients, the three-dimensional results are compared with
conical-� ow solutions, as were previously used.8 These were
obtained by � rst calculating the surface velocities by integra-
tion of the surface Euler equations [Eq. (1)], in which the
conical-� ow assumption is used. These edge velocities are then
used as boundary condition in the solution of the conical
boundary-layer equations. Figure 3 shows signi� cant differ-
ences between the two solutions, which increase when going
downstream. It can be clearly seen on Fig. 4 that the edge
velocities calculated with the conical surface Euler equations

[Eq. (1)] differ, mainly in orientation, from those predicted by
the three-dimensional inviscid solution. The differences be-
tween the fully three-dimensional and conical boundary-layer
solutions are caused primarily by the calculation of the surface
velocities rather than by the assumption of a conical pressure
� eld in the boundary-layer equations. This conclusion was sub-
stantiated by conducting fully three-dimensional boundary-
layer calculations with the velocities calculated using the con-
ical surface Euler equations: The results were essentially
identical to the pure conical solutions of Fig. 3.

The transition prediction procedure used in this work begins
with the determination of the complex dispersion relation
v(a, b) at some selected points on the wing to identify the
types of instabilities present and their location. The dispersion
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Fig. 7 n factor—three-dimensional solution.

Fig. 6 Optimum frequency and spatial growth rate at z /b =
17.2%.

Fig. 5 Local stability characteristics at z /b = 17.2%.

relations in the unstable region at x /c = 2 and 20% (z/b =
17.2%) are illustrated in Fig. 5. The complex dispersion re-
lations of Fig. 5 are expressed in terms of the wave number
module k = , and the wave orientation with respect2 2a 1 bÏ
to the streamline c = arctan(b/a). The different shades of gray
represent the nondimensional temporal ampli� cation rate vi

while the nondimensional frequency vr is represented by the
numbered lines. The graphical representation in Fig. 5 is a
valuable tool in helping to choose the critical frequencies and
to visualize the physical mechanism. For example, the complex
dispersion relation near the leading edge (x/c = 2%), typical
of regions with cross� ow instability, is shown in Fig. 5a. The
unstable wave orientation lies in the range 50 deg # c # 95
deg, and the maximum temporal growth rate vi is obtained at
(c, k) = (80 deg, 0.45). The complex dispersion relation down-
stream of the leading edge (x/c = 0.20), typical of regions
where both cross� ow and streamwise instabilities exist, is
shown in Fig. 5b. At such locations, multiple local maxima
can be noted within the unstable region. In this speci� c case,
one of the local maxima corresponds to a cross� ow instability
at (c, k) = (87 deg, 0.55), and the other two are mainly related
to streamwise instabilities at (c, k) = (35 deg, 0.15) and (265
deg, 0.25).

The existence of multiple local maxima makes the n-factor
value nonunique because, in principle, cross� ow and stream-
wise instabilities can be treated separately. We adopted the
envelope method strategy, however, which considers the cross-
� ow and streamwise instabilities as additive. This strategy was
chosen based on past success reported in the literature.

The selection of the critical frequencies to be used in the n-
factor calculations is directly related to the evolution of the
local maxima downstream of the leading edge. Once a local
maximum is located at a (x, z) location, it is possible to follow
it downstream using a free maximization procedure of vi in
the (a, b) space. Typical results of such a tracking are pre-

sented in Fig. 6. Based on these results, it has been determined
that the most critical frequency for the case studied is 5.0 kHz,
and is essentially invariant along the span.

Contours of the computed n factor for that given frequency
are shown in Fig. 7. Much of the growth of the n factor from
the leading edge is effected by cross� ow instabilities, though
mixed cross� ow/streamwise instabilities have a signi� cant
contribution on the outboard section of the wing, with a switch
from the former instabilities to the latter at about 10% chord.
An interesting feature that can be observed here is the in� u-
ence of the junction between the two sections of the wing,
where a local maximum of the n factor can be seen on the
upper surface. This is absent from the results obtained with a
locally conical method,8 as shown in Fig. 8. This also shows
levels of ampli� cation that differ much from the three-dimen-
sional solution, the latter being lower on the inboard section
and higher on the outboard. These differences are as important
as those that typically result from the inclusion of curvature
or nonparallel effects.16,17

A typical value of the critical n factor for low-disturbance
� ight conditions is ncr = 15.14 Figure 9a shows the transition
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Fig. 8 n factor—locally conical solution.

Fig. 9 Location of transition (n = 15, f = 5.0 kHz).

Fig. 10 n-factor evolution on ONERA-M6 wing.

line based on this value, for both the fully three-dimensional
and the locally conical solutions. On the outboard section of
the suction side, the locally conical calculations do not reach
the value n = 15, which explains the sudden aft-movement of
the transition line there, corresponding to transition occurring
at the shock. The n factor from the three-dimensional calcu-
lations also remains below 15 on part of the outboard section,
but it still indicates a continuous transition line from wing root
to wing tip, which corresponds more to what would be ex-
pected. The aft movement of the transition line is an effect of
the decreasing local Reynolds number and takes place regard-
less of the particular value of ncr chosen. Figure 9b shows that
the differences between the two solutions are most signi� cant
on the upper surface of the wing, where the spanwise pressure
gradients are most important. Even though these gradients are
larger on the inboard section, it is on the outboard section that
transition predictions most differ. Using a locally conical ap-
proach results in the two sections of the wing being treated as
though they were two distinct wings, whereas the fully three-
dimensional approach allows the in� uence of the inboard � ow
to be felt on the outboard � ow stability characteristics.

ONERA-M6 Wing
The ONERA-M6 wing is a simpler geometry, with constant

pro� le and sweep angles, no twist, and a low aspect ratio. The
test case studied was M` = 0.84, a = 3.06 deg, and Rec = 11.7
3 106 (based on the mean chord, c = 0.646 m).15 Figure 10
presents the complete picture of the n-factor growth at 25.0
kHz, which was found to be the critical frequency for this
wing. This frequency is much higher than that found for the
NASA AMES wing. The presence of a strong shock close to
the leading edge meant that the laminar boundary-layer cal-
culations could not proceed very far downstream. The n factors
predicted by the locally conical solution are slighty higher than
those resulting from the three-dimensional approach. Using the

value of the critical n factor mentioned earlier, both solutions
would however indicate that transition does not occur before
the shock.

Conclusions
A stability analyzer for transition prediction over arbitrary

three-dimensional wings operating in the transonic regime has
been applied to the supercritical NASA AMES swept wing and
the ONERA-M6 wing. A comparison of the present transition
predictions with those obtained using conical-� ow solutions
has illustrated the importance of taking into account the span-
wise pressure gradients, and thus of using fully three-dimen-
sional � ow solvers. The difference between the conical and
fully three-dimensional results is of the same order of mag-
nitude as that resulting from the inclusion of curvature or non-
parallel effects, and it originates mainly from the different
means of calculating the surface velocities. Calculations on
wings with NLF pro� les should further con� rm these conclu-
sions.
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