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Fully Three-Dimensional Transition Prediction
on Swept Wings in Transonic Flows
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A stability analyzer for transition prediction over arbitrary three-dimensional wings operating in the
transonic regime is proposed. This analyzer is used to illustrate the importance of including the effects
of spanwise pressure gradient in transition predictions over such configurations. To this end, three cal-
culation methods were employed: 1) a three-dimensional Euler solver, 2) a three-dimensional boundary-
layer solver, and 3) a numerical method for the solution of the linear stability equations based on the
temporal formulation. The influence of spanwise pressure gradients is illustrated by the application of
this stability analyzer to the flow about the NASA AMES and ONERA-M6 wings. The pertinence of using
a fully three-dimensional method rather than the simpler conical-flow calculations is demonstrated. The
differences between the fully three-dimensional and conical-flow results are of the same order as the

curvature or nonparallel effects.

Nomenclature
wingspan, m
pressure coefficient
wing mean chord, m
frequency, Hz
wave-vector module
freestream Mach number
amplification factor
mean flow quantity
instantaneous flow quantity
Reynolds number, U.c/v,
time
inviscid flow velocity, m/s
instantaneous velocity components
group velocity vector, real part
freestream velocity, m/s
local Cartesian coordinates
angle of attack
wave-vector components
spatial growth rate
kinematic viscosity, m%/s
= wave-vector direction with respect to the inviscid
streamline
orientation of the inviscid streamline with respect
to the chordwise direction
pulsation of the perturbation
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Subscripts
i =
r =

imaginary part
real part
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Superscript
~ = perturbation quantity

Introduction

HE transition from laminar to turbulent flow is an essen-

tial aspect of fluid dynamics, in relation to drag reduction.
The physical processes associated with transition are not yet
fully understood, as pointed out by Saric' in his review of
experimental research in transition. It is nonetheless an estab-
lished fact that a significant reduction of the skin friction drag
can be obtained by maintaining a laminar flow over the longest
extent possible of the wing. This is realized by the use of
natural laminar flow (NLF) airfoils and laminar flow control
(LFC) technologies such as suction and wall cooling.

The capability to predict transition is thus essential to wing-
design engineers. The linear stability theory, along with the
empirical e” method, provides an appropriate framework for
transition predictions over wings in the cruise regime. Numer-
ical methods for the solution of the linear stability equations
have been developed.”®> These methods were mostly applied
to infinite swept wings or conical wings. Only a few recent
efforts are presented in the literature for the analysis of arbi-
trary geometries. Spall and Wie® studied the stability of the
boundary layer over the nose of a general aviation aircraft in
the incompressible flow regime. Iyer et al.” considered the at-
tachment-line problem on the leading edge of a swept tran-
sonic wing.

The authors have developed a stability analyzer (SCOLIC)
based on the temporal and spatial formulations of the linear
stability theory.*® SCOLIC also originally used the conical-
wing assumption and was therefore appropriate for the predic-
tion of transition location on two-dimensional sections and
three-dimensional conical swept wings only. It has now been
extended for arbitrary three-dimensional flows and integrated
into a stability analysis package that includes a three-dimen-
sional Euler solver and a three-dimensional boundary-layer
solver.

This paper presents results that have been obtained with this
stability analyzer. The importance of undertaking fully three-
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dimensional calculations is demonstrated by comparing the re-
sults obtained with the three-dimensional stability analyzer to
conical-flow solutions.

Stability Analysis

The linear stability theory analyzes the characteristics of the
instabilities in the mean laminar flow near the surface of in-
terest. Transition prediction is composed of three tasks: 1) the
calculation of the external inviscid flowfield using an inviscid-
flow solver, 2) the accurate calculation of the viscous flowfield
in the vicinity of the body using a boundary-layer solver, and
3) the solution of the linear stability equations.

Flow Calculations

The inviscid flowfield is obtained through the solution of the
three-dimensional unsteady Euler equations. The numerical
method chosen here to solve the equations is based on a finite
volume cell-centered formulation.'” A structured O-H grid is
used to discretize the calculation domain. To compute the vis-
cous flow near the surface, a finite difference boundary-layer
code based on the characteristics method'" is used.

In the complete three-dimensional calculation procedure
used in this work, the surface velocity distribution needed to
conduct boundary-layer calculations is directly given by the
Euler solver. On the other hand, the procedure typically used
to compute surface velocities in conical-flow calculations con-
sists of solving the surface Euler equations expressed in the
conical-wing coordinate system'*:

dw, >
d—v;=—ue=—\/u:—w; (1)

where u, is the circumferential (chordwise) surface velocity,
w, is the radial (spanwise) surface velocity, u, is the resultant
inviscid velocity obtained from the surface pressure by using
the compressible Bernoulli equation, and 6 is the circumfer-
ential coordinate.

Transition Prediction

Linear Stability Theory

For a local Cartesian coordinate system, the instantaneous
flow variables, i.e., the velocity components u, v, w in the
streamwise x, wall-normal y, and crossflow z directions, the
pressure p and the temperature 7, are assumed to be of the
form

qx,y,z, 1) = Q(y) + q(y)ei(«x+ﬁz—wz) )

where Q(y) is the laminar mean profile, g(y) is the perturbation
amplitude, o and P are its wave numbers, and  its pulsation
(complex frequency).

The problem is formulated using the parallel flow assump-
tion. By neglecting the non-linear and higher-order terms, the
problem can be expressed as a homogeneous system of five
linear, second-order ODEs. Given homogeneous boundary
conditions, the task reduces to the solution of an eigenvalue
problem: nontrivial solutions exist only for certain combina-
tions of the parameters «, B, and w. In general o, 3, and ®
are complex numbers, which corresponds to six real param-
eters. In the temporal stability theory used here, o and 3 are
assumed to be real. The real part of w, w,, is the frequency of
the perturbation, and its imaginary part w, yields the pertur-
bation temporal growth rate.

A finite difference method using a staggered mesh is em-
ployed in this work to discretize the linear stability equations.
For given o and B, the system of equations is amenable to a
linear eigenvalue problem in w.

e” Method

The linear stability theory allows the calculation of the sta-
bility characteristics of a laminar flowfield. However, the main

objective of this work is transition prediction. The main as-
sumption regarding transition prediction is that there exists a
critical amplification of the disturbances at the transition lo-
cation. The amplitude ratio A/A, can be calculated assuming
that the growth of the disturbance from its initial amplitude
Ao, to the critical value A, can be predicted by the linear
stability characteristics. The amplitude ratio, or the more com-
monly used amplification factor, n = €n(A/A,), is calculated by
integrating v, along the path of propagation that is parallel to

Vg
n(s) = f — v ds 3)

where s is the position on the wing surface and s, is the point
of inception of the perturbation (y; = 0). The real part of the
group velocity is given by
w, Jw,

Vg*‘(m’es) @
When integrating the n factor, the main difference between a
quasi-three-dimensional stability analysis and a fully three-di-
mensional one lies in the selection of the boundary-layer so-
lutions. On an infinite-span wing, the similarity of the solution
in the spanwise direction allows the use of a single spanwise
section, and the calculations proceed in the streamwise direc-
tion one station at a time. The same applies for a conical wing.
On an arbitrary three-dimensional wing, there is no such span-
wise similarity. It is therefore necessary to use a selection pro-
cedure based on the group velocity. Figure 1 illustrates the
procedure used in SCOLIC: the n-factor integration points are
defined by following the direction given by the group velocity
until the intersection with a grid line where new stability cal-
culations are performed using the boundary-layer profiles from
the nearest grid point. This strategy was adopted to avoid in-
terpolation of the boundary-layer profiles between neighboring
stations. The calculation procedure starts near the leading edge
and the inception point, where the n-factor integration begins,
is automatically determined by the code.

The n-factor calculation is done under the constraint of con-
stant dimensional frequency f. A finite number of frequencies
are selected, and an n factor is calculated for each of them.
The frequency that reaches the critical n factor first is consid-
ered the most relevant frequency for the prediction of transi-
tion location.

In the temporal stability theory used here, there are four
independent parameters: o, 3, w,, and w,. The eigenvalue prob-

-V,
——— Path of Disturbance

= BL Input Points
o n Factor Integration Points

Fig. 1 Fully three-dimensional n-factor integration procedure.
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lem provides two real relations. In the calculation of the n
factor, the frequency w, is given. Therefore, an additional re-
lation (or constraint) is needed to close the problem. This ad-
ditional constraint is provided by the maximization of the tem-
poral growth rate w; (envelope method).

The correlation of the amplification factor with the transition
location is the basis of the so-called e¢” method. The critical
value n., is not universal and depends on the type and ampli-
tude of the forcing disturbances.” For flight conditions (low
background turbulence levels), a mean value of 15 has been
observed experimentally, when the n factor is calculated us-
ing the envelope method.

The numerical procedures implemented in the code SCOLIC
have been validated by comparisons of the results with those
from other linear stability analysis codes. Such comparisons
are reported in Refs. 8 and 9.

Results and Discussion

To demonstrate the capability of the proposed stability an-
alyzer to predict transition over an arbitrary wing, the latter
was applied to the transonic flow on two different wings: the
NASA AMES swept wing and the ONERA-M6 wing. The
whole calculation procedure will be presented for the NASA
AMES wing, with results for both the lower and upper sur-
faces, whereas only n-factor distributions will be given for the
ONERA wing. These wings are described in Ref. 15.

NASA AMES Swept Wing

The NASA AMES swept wing is representative of actual
geometries encountered on commercial aircraft. It is composed
of two sections: the inboard section has a leading-edge sweep
of 36 deg and a trailing edge sweep of 3.6 deg, while the
sweep angles of the outboard section are 27 and 17 deg for
the leading and trailing edges, respectively. The wing profile
and twist vary along the span. Calculations were performed at
M. = 0.833, a = 1.75 deg, and Re. = 14.3 X 10° (based on
the mean chord, ¢ = 2.42 m).

The pressure distribution on the wing surface was obtained
using the three-dimensional Euler solver with a grid of 121 X
31 X 48 points. The pressure coefficient distribution on the
suction and pressure sides of the wing is presented in Fig. 2.
It is worth noticing at this point that the pressure field over
this wing is far from being conical because significant span-
wise pressure gradients are observed in Fig. 2, particularly on
the inboard section, and that a strong shock is located far aft
along the whole span of the wing upper surface.

Streamwise and crossflow velocity distributions are pre-
sented in Fig. 3 at three x/c locations in the 17.2% span sec-
tion. To assess the importance of the spanwise pressure gra-
dients, the three-dimensional results are compared with
conical-flow solutions, as were previously used.® These were
obtained by first calculating the surface velocities by integra-
tion of the surface Euler equations [Eq. (1)], in which the
conical-flow assumption is used. These edge velocities are then
used as boundary condition in the solution of the conical
boundary-layer equations. Figure 3 shows significant differ-
ences between the two solutions, which increase when going
downstream. It can be clearly seen on Fig. 4 that the edge
velocities calculated with the conical surface Euler equations

NASA AMES Swept Wing
M_=0.833 a=1.75

Lower surface

Upper surface

Fig. 2 Surface pressure distribution.

[Eq. (1)] differ, mainly in orientation, from those predicted by
the three-dimensional inviscid solution. The differences be-
tween the fully three-dimensional and conical boundary-layer
solutions are caused primarily by the calculation of the surface
velocities rather than by the assumption of a conical pressure
field in the boundary-layer equations. This conclusion was sub-
stantiated by conducting fully three-dimensional boundary-
layer calculations with the velocities calculated using the con-
ical surface Euler equations: The results were essentially
identical to the pure conical solutions of Fig. 3.

The transition prediction procedure used in this work begins
with the determination of the complex dispersion relation
w(a, B) at some selected points on the wing to identify the
types of instabilities present and their location. The dispersion

NASA AMES Swept Wing
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Fig. 3 Boundary-layer profiles at z/b = 17.2%.
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Fig. 4 Surface velocity distribution at z/b = 17.2.
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relations in the unstable region at x/c = 2 and 20% (z/b =
17.2%) are illustrated in Fig. 5. The complex dispersion re-
lations of Fig. 5 are expressed in terms of the wave number
module k = \/oc2 + Bz, and the wave orientation with respect
to the streamline ¢ = arctan(/a). The different shades of gray
represent the nondimensional temporal amplification rate w,
while the nondimensional frequency w, is represented by the
numbered lines. The graphical representation in Fig. 5 is a
valuable tool in helping to choose the critical frequencies and
to visualize the physical mechanism. For example, the complex
dispersion relation near the leading edge (x/c = 2%), typical
of regions with crossflow instability, is shown in Fig. 5a. The
unstable wave orientation lies in the range 50 deg = | = 95
deg, and the maximum temporal growth rate w; is obtained at
(P, k) = (80 deg, 0.45). The complex dispersion relation down-
stream of the leading edge (x/c = 0.20), typical of regions
where both crossflow and streamwise instabilities exist, is
shown in Fig. 5b. At such locations, multiple local maxima
can be noted within the unstable region. In this specific case,
one of the local maxima corresponds to a crossflow instability
at (5, k) = (87 deg, 0.55), and the other two are mainly related
to streamwise instabilities at (s, k) = (35 deg, 0.15) and (—65
deg, 0.25).

The existence of multiple local maxima makes the n-factor
value nonunique because, in principle, crossflow and stream-
wise instabilities can be treated separately. We adopted the
envelope method strategy, however, which considers the cross-
flow and streamwise instabilities as additive. This strategy was
chosen based on past success reported in the literature.

The selection of the critical frequencies to be used in the n-
factor calculations is directly related to the evolution of the
local maxima downstream of the leading edge. Once a local
maximum is located at a (x, z) location, it is possible to follow
it downstream using a free maximization procedure of w; in
the (a, B) space. Typical results of such a tracking are pre-

NASA AMES Swept Wing
M_=0.833 a=1.75°
Re, =14.3-10°

0.8

L e |

z/b=172%
xlc=2.0%

0.6 ,
- 0.01
= | 0.008
- 0.006
04 0.004
I 0.002
: = 0
0.2
oL ) NSRS YOI T S TN NSO TSN T TN SO TR S ST S N A |
50 60 70 80 90 100
a) y(°)

NASA AMES Swept Wing
M_=0.833 o=1.75
Re, = 14.3-10°

zb=17.2%
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F— 0
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Fig. 5 Local stability characteristics at z/b = 17.2%.

sented in Fig. 6. Based on these results, it has been determined
that the most critical frequency for the case studied is 5.0 kHz,
and is essentially invariant along the span.

Contours of the computed n factor for that given frequency
are shown in Fig. 7. Much of the growth of the n factor from
the leading edge is effected by crossflow instabilities, though
mixed crossflow/streamwise instabilities have a significant
contribution on the outboard section of the wing, with a switch
from the former instabilities to the latter at about 10% chord.
An interesting feature that can be observed here is the influ-
ence of the junction between the two sections of the wing,
where a local maximum of the n factor can be seen on the
upper surface. This is absent from the results obtained with a
locally conical method,® as shown in Fig. 8. This also shows
levels of amplification that differ much from the three-dimen-
sional solution, the latter being lower on the inboard section
and higher on the outboard. These differences are as important
as those that typically result from the inclusion of curvature
or nonparallel effects.'>"”

A typical value of the critical n factor for low-disturbance
flight conditions is n. = 15.'* Figure 9a shows the transition

NASA AMES Swept Wing
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NASA AMES Swept Wing .
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0
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x/c
Fig. 6 Optimum frequency and spatial growth rate at z/b =
17.2%.

NASA AMES Swept Wing .
M_=0.833 =175 Re =14.310

f=5.0kHz 0 5 101520 25 30

Lower surface

Upper surface

Fig. 7 n factor—three-dimensional solution.
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NASA AMES Swept Wing
M_=0833 a=1.75 Re,=14310°

f=5.0kHz n: 0 5 101520 25 30

Lower surface

Upper surface

Fig. 8 n factor—Ilocally conical solution.

NASA AMES Swept Wing | 3D
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a) Lower surface Upper surface
<08
=
06
04
02

. :
-1 -0.75 -0.5 -0.25 M) 0.25 0.5 0.75 1
b) b

Fig. 9 Location of transition (n = 15, f = 5.0 kHz).

line based on this value, for both the fully three-dimensional
and the locally conical solutions. On the outboard section of
the suction side, the locally conical calculations do not reach
the value n = 15, which explains the sudden aft-movement of
the transition line there, corresponding to transition occurring
at the shock. The n factor from the three-dimensional calcu-
lations also remains below 15 on part of the outboard section,
but it still indicates a continuous transition line from wing root
to wing tip, which corresponds more to what would be ex-
pected. The aft movement of the transition line is an effect of
the decreasing local Reynolds number and takes place regard-
less of the particular value of n. chosen. Figure 9b shows that
the differences between the two solutions are most significant
on the upper surface of the wing, where the spanwise pressure
gradients are most important. Even though these gradients are
larger on the inboard section, it is on the outboard section that
transition predictions most differ. Using a locally conical ap-
proach results in the two sections of the wing being treated as
though they were two distinct wings, whereas the fully three-
dimensional approach allows the influence of the inboard flow
to be felt on the outboard flow stability characteristics.

ONERA-M6 Wing

The ONERA-M6 wing is a simpler geometry, with constant
profile and sweep angles, no twist, and a low aspectratio. The
test case studied was M.. = 0.84, o = 3.06 deg, and Re. = 11.7
X 10° (based on the mean chord, ¢ = 0.646 m)." Figure 10
presents the complete picture of the n-factor growth at 25.0
kHz, which was found to be the critical frequency for this
wing. This frequency is much higher than that found for the
NASA AMES wing. The presence of a strong shock close to
the leading edge meant that the laminar boundary-layer cal-
culations could not proceed very far downstream. The n factors
predicted by the locally conical solution are slighty higher than
those resulting from the three-dimensional approach. Using the

ONERA-M6 Wing
M.=0.84 o=3.06" Re=11.710°
f=25.0kHz

Fig. 10 n-factor evolution on ONERA-M6 wing.

value of the critical n factor mentioned earlier, both solutions
would however indicate that transition does not occur before
the shock.

Conclusions

A stability analyzer for transition prediction over arbitrary
three-dimensional wings operating in the transonic regime has
been applied to the supercritical NASA AMES swept wing and
the ONERA-M6 wing. A comparison of the present transition
predictions with those obtained using conical-flow solutions
has illustrated the importance of taking into account the span-
wise pressure gradients, and thus of using fully three-dimen-
sional flow solvers. The difference between the conical and
fully three-dimensional results is of the same order of mag-
nitude as that resulting from the inclusion of curvature or non-
parallel effects, and it originates mainly from the different
means of calculating the surface velocities. Calculations on
wings with NLF profiles should further confirm these conclu-
sions.
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